Computational prediction of protein-protein interactions.

نویسندگان

  • Tobias Ehrenberger
  • Lewis C Cantley
  • Michael B Yaffe
چکیده

The prediction of protein-protein interactions and kinase-specific phosphorylation sites on individual proteins is critical for correctly placing proteins within signaling pathways and networks. The importance of this type of annotation continues to increase with the continued explosion of genomic and proteomic data, particularly with emerging data categorizing posttranslational modifications on a large scale. A variety of computational tools are available for this purpose. In this chapter, we review the general methodologies for these types of computational predictions and present a detailed user-focused tutorial of one such method and computational tool, Scansite, which is freely available to the entire scientific community over the Internet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Discovering Domains Mediating Protein Interactions

Background: Protein-protein interactions do not provide any direct information re‌garding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting do‌main pairs. However they do not consider the in...

متن کامل

Prediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks

Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

In silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties

Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biotechnology

دوره 38 1  شماره 

صفحات  -

تاریخ انتشار 2004